New estimates of HMA glacier change

Fanny, Patrick, Etienne Berthier and colleagues from Oslo University (Andreas Kääb and Désirée Treichler) have just published the study “A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016” in Nature Geoscience. They used more than 50,000 ASTER satellite images to derive digital elevation models and to track glacier thickness changes over High Mountain Asia. They provide the first consistent estimate of volume change for ~90 000 km2 of glaciers.
Their study confirms the existence of the so called “Karakoram anomaly” and, following a 2015 study by Andreas Kääb et al. refines its location: glaciers located in the West Kunlun, Karakoram and Eastern Pamir have balanced or slightly positive mass changes. The most negative mass changes are found in the Eastern Himalaya, where glaciers loose mass at rates similar to the ones in the European Alps (up to 0.62 ± 0.23 m w.e. yr-1).

Rate of glacier elevation change (in m/yr) for the period 2000-2016. Red dots represent area where glaciers are thinning and blue dots area where glaciers are thickening.

Rate of glacier elevation change (in m/yr) for the period 2000-2016. Red dots represent area where glaciers are thinning and blue dots area where glaciers are thickening.


These data will help to constrain glacio-hydrological models and to better understand the contribution of glaciers to stream flow and sea level rise. Nevertheless, they provide only mass balance values averaged over 16 years and therefore do not give access to the processes responsible for these changes. More field data are needed to investigate these.



AGU Session – Recent advances in understanding the high-mountain water cycle

We are excited about hosting a session at this year’s AGU in New Orleans. We hope to bring together a wide range of research from catchment hydrology, the cryosphere, snow hydrology and atmospheric sciences. Two invited lecturers – Dirk Scherler from GFZ and Duncan Quincey from the University of Leeds – have agreed to give insights into recent forays in their field sites in High-Mountain Asia. Deadline for submissions is the 2nd of August – we look forward to see many of you there.

Click here for details and Submission:

C028: Recent advances in understanding the high-mountain water cycle
Session Description:

High-mountain catchments play an important water supplying role and are sensitive to climate change. Yet the monitoring and modelling of such regions remains a challenge, due to poor accessibility, limited data availability and the lack of numerical models that address key cryospheric and hydrological processes in sufficient physical detail. This session brings together studies that focus on integrating observations, remote sensing and numerical models with the aim to understand present and future glacio-, hydro- and meteorological processes in mountainous regions. It focuses on advances in understanding high-altitude meteorology, feedbacks between the cryosphere and atmosphere, glacier and snow dynamics, climate change impacts and the associated hydrological response. The session welcomes in particular  studies that: i) link results from atmospheric modelling to the high-altitude water cycle, (ii) advance the process understanding of glaciers, snow and the hydrological cycle, (iv) quantify hydro-meteorological extremes, and (v) assess impacts of climate change using process-based modelling.

Walter Immerzeel Boussinesq Awardee 2017

We are pleased to announce that on Friday June 2nd Walter Immerzeel received the Boussinesq Prize 2017, a tri-annual award given to a person for recognition of his/her outstanding scientific contributions to hydrological sciences. It was awarded by prof. Bob Su at the Boussinesq Spring Meeting 2017 in Enschede. At the meeting Walter gave a keynote presentation on “Recent advances in understanding climate, glacier and river dynamics in high mountain Asia”. A video of this presentation can be watched here.



Link to original news item

Walter Immerzeel presents Himalayan research on the 10th anniversary of the ERC

Have you always wondered what these prestigious, multi-million euro research grants from the European Research Council (ERC) are all about? Are you interested how ERC research projects relate to your daily life? Together with nine other ERC laureates from Utrecht University, Walter Immerzeel presented his ERC research during the ERC Day ‘Utrecht Inspires’ on 28 March, which was part of celebrations of the 10th Anniversary of the ERC.


UAV surveys in Canadian Rockies

A report by Philip Kraaijenbrink

I am visiting Canmore in the Canadian Rocky Mountains to collaborate with Joe Shea on a new unmanned aerial vehicle study led by the Centre for Hydrology of the University of Saskatchewan. The objective is to monitor snow melt and redistribution throughout the melt season using UAV surveys and in situ measurements of the snow pack. The study site is near Fortress Mountain at about 2300 m elevation and is easily accessible by a combination of car and snowmobile.

Unfortunately, the site is often used by the film industry for winter forest scenes. Miscommunication has had us travel up there last week on snowmobiles to find out we could not fly because of a movie shoot. Additionally, the movie crew considerably disturbed the snow pack of interest…

Therefore, we went off to a new site just a bit further up the ridge today. Of course only after checking the weather and wind conditions using the various self-maintained weather stations at the site. Objective: redo the entire ground control survey that was carried out at the other site and perform some UAV flights.

Conditions on the ridge were a bit windy at first but we had faith it would settle down in the afternoon for the flights. Instead of settling down though, strong wind and heavy gusts came in at lunch time. Besides not being able to fly because of the wind, pounding in ground control poles and measuring them with the DGPS rover was not even possible since the gusts made walking around in the snow with all the gear next to impossible. Turned out to be the worst winds of the whole week. Let’s hope for better luck next time we’re in…


Getting up the ridge with snowmobiles and toboggans.


Pannable 360-panorama of the site on Fortress Ridge and the DGPS setup.


Onset of the winds while doing the final DGPS setup.



Graph of wind speed measured at Fortress Mountain over the last week.

1 2 3 9