AGU Session – Recent advances in understanding the high-mountain water cycle

We are excited about hosting a session at this year’s AGU in New Orleans. We hope to bring together a wide range of research from catchment hydrology, the cryosphere, snow hydrology and atmospheric sciences. Two invited lecturers – Dirk Scherler from GFZ and Duncan Quincey from the University of Leeds – have agreed to give insights into recent forays in their field sites in High-Mountain Asia. Deadline for submissions is the 2nd of August – we look forward to see many of you there.

Click here for details and Submission:

C028: Recent advances in understanding the high-mountain water cycle
Session Description:

High-mountain catchments play an important water supplying role and are sensitive to climate change. Yet the monitoring and modelling of such regions remains a challenge, due to poor accessibility, limited data availability and the lack of numerical models that address key cryospheric and hydrological processes in sufficient physical detail. This session brings together studies that focus on integrating observations, remote sensing and numerical models with the aim to understand present and future glacio-, hydro- and meteorological processes in mountainous regions. It focuses on advances in understanding high-altitude meteorology, feedbacks between the cryosphere and atmosphere, glacier and snow dynamics, climate change impacts and the associated hydrological response. The session welcomes in particular  studies that: i) link results from atmospheric modelling to the high-altitude water cycle, (ii) advance the process understanding of glaciers, snow and the hydrological cycle, (iv) quantify hydro-meteorological extremes, and (v) assess impacts of climate change using process-based modelling.

Walter Immerzeel Boussinesq Awardee 2017

We are pleased to announce that on Friday June 2nd Walter Immerzeel received the Boussinesq Prize 2017, a tri-annual award given to a person for recognition of his/her outstanding scientific contributions to hydrological sciences. It was awarded by prof. Bob Su at the Boussinesq Spring Meeting 2017 in Enschede. At the meeting Walter gave a keynote presentation on “Recent advances in understanding climate, glacier and river dynamics in high mountain Asia”. A video of this presentation can be watched here.

 

 

Link to original news item

Walter Immerzeel presents Himalayan research on the 10th anniversary of the ERC

Have you always wondered what these prestigious, multi-million euro research grants from the European Research Council (ERC) are all about? Are you interested how ERC research projects relate to your daily life? Together with nine other ERC laureates from Utrecht University, Walter Immerzeel presented his ERC research during the ERC Day ‘Utrecht Inspires’ on 28 March, which was part of celebrations of the 10th Anniversary of the ERC.

 

UAV surveys in Canadian Rockies

A report by Philip Kraaijenbrink

I am visiting Canmore in the Canadian Rocky Mountains to collaborate with Joe Shea on a new unmanned aerial vehicle study led by the Centre for Hydrology of the University of Saskatchewan. The objective is to monitor snow melt and redistribution throughout the melt season using UAV surveys and in situ measurements of the snow pack. The study site is near Fortress Mountain at about 2300 m elevation and is easily accessible by a combination of car and snowmobile.

Unfortunately, the site is often used by the film industry for winter forest scenes. Miscommunication has had us travel up there last week on snowmobiles to find out we could not fly because of a movie shoot. Additionally, the movie crew considerably disturbed the snow pack of interest…

Therefore, we went off to a new site just a bit further up the ridge today. Of course only after checking the weather and wind conditions using the various self-maintained weather stations at the site. Objective: redo the entire ground control survey that was carried out at the other site and perform some UAV flights.

Conditions on the ridge were a bit windy at first but we had faith it would settle down in the afternoon for the flights. Instead of settling down though, strong wind and heavy gusts came in at lunch time. Besides not being able to fly because of the wind, pounding in ground control poles and measuring them with the DGPS rover was not even possible since the gusts made walking around in the snow with all the gear next to impossible. Turned out to be the worst winds of the whole week. Let’s hope for better luck next time we’re in…

 

 ski-doo_and_toboggan
Getting up the ridge with snowmobiles and toboggans.

 


Pannable 360-panorama of the site on Fortress Ridge and the DGPS setup.

 

Onset of the winds while doing the final DGPS setup.

 

fortress_winds

Graph of wind speed measured at Fortress Mountain over the last week.

3-D model of ice cliff backwasting published

Pascal and several team members have just had published their paper, A physically based 3-D model of ice cliff evolution over debris-covered glaciers, in the Journal of Geophysical Research: Earth Surface. They used a new data set of high-resolution observations of cliff evolution over one ablation season to identify patterns of changes over four cliffs on the debris-covered tongue of Lirung Glacier (Nepalese Himalaya). The four cliffs have different shape, dominant orientation and slopes, and different degree and history of coupling to a supraglacial pond. The observations show that cliffs on the same glacier and at short distance from each other can both flatten and recline, remain self-similar, or expand radially. Based on the observations a model accounting for the three main processes controlling cliff evolution was developed: atmospheric melt, pond contact ablation enhancement for the cliff base, and reburial by surrounding debris. This modeling approach is able to simulate the cliff evolution over one melt season in a satisfying way in terms of horizontal and vertical extent as well as mean slope and aspect. Modelled volume losses could be validated and were in agreement with TIN-based observations (Brun et al. 2016, Journal of Glaciology).

Simulated cliff evolution based on the monthly updated outlines.

Simulated cliff evolution based on the monthly updated outlines.

The model is able to capture the main cliff dynamics and geometric transformation. Importantly, the model application has clearly shown that for very high resolution studies, neglecting a dynamic update of the cliff geometry would lead to erroneous results in terms of backwasting patterns and volumes.

1 2 3 9